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Intro: expanders and bipartite graphs

Definitions

A simple bipartite graph consists of a set of vertices partitioned
into two classes, and a set of edges which occur solely between
the classes.
Sometimes denoted as G = (X,Y,E), where X, Y are vertex classes
and E is the set of edges.
Notation: |X| = m, |Y| = n.
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Intro: expanders and bipartite graphs

Definitions

A biregular bipartite graph has the property that all vertices in the
same class have the same degree
Notation: |X| = m, |Y| = n, d1 for the common degree of class X, d2
for the degree of class Y.
Note that md1 = nd2.

Ioana Dumitriu (UW) Spectral gap in bipartite graphs February 27, 2018 4 / 22



Intro: expanders and bipartite graphs

Importance; applications

A number of important and interesting classes of graphs are
bipartite and some are biregular (trees, even cycles, median
graphs, hypercubes).

Applications include projective geometry (Levi graphs), coding
theory (yielding factor codes and Tanner codes, more on that
later), computer science (Petri nets, assignment problems,
community detection), signal processing (matrix completion).
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Intro: expanders and bipartite graphs

Adjacency matrix

For a bipartite graph, the adjacency matrix A with Aij = δi∼j looks
like

A =

[
0 X

XT 0

]
.

As a consequence, their spectrum is symmetric.
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Intro: expanders and bipartite graphs

Expanders

Graphs with high connectivity and which exhibit rapid mixing;
sparse analogues to the complete graph

Of particular interest in CS and coding theory (from mixing to
design of error-correcting codes)
Random regular graphs (uniformly distributed) are classical (and
best-known) examples of such expanders; expanding properties
characterized by the spectral gap of the adjacency matrix.
Uniform distribution important in making assertions like “almost
all regular graphs”
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Intro: expanders and bipartite graphs

Random regular graphs

For an (n, d) random regular graph (n vertices, each of degree d),
the eigenvalues denoted λ1 ≥ λ2 ≥ . . . ≥ λn,

λ1 = d (trivial)
Quantity of interest is the second largest eigenvalue, defined as
η = max{|λ2|, |λn|}.

Ioana Dumitriu (UW) Spectral gap in bipartite graphs February 27, 2018 8 / 22



Intro: expanders and bipartite graphs

Random regular graphs

For an (n, d) random regular graph (n vertices, each of degree d),
the eigenvalues denoted λ1 ≥ λ2 ≥ . . . ≥ λn,
λ1 = d (trivial)

Quantity of interest is the second largest eigenvalue, defined as
η = max{|λ2|, |λn|}.

Ioana Dumitriu (UW) Spectral gap in bipartite graphs February 27, 2018 8 / 22



Intro: expanders and bipartite graphs

Random regular graphs

For an (n, d) random regular graph (n vertices, each of degree d),
the eigenvalues denoted λ1 ≥ λ2 ≥ . . . ≥ λn,
λ1 = d (trivial)
Quantity of interest is the second largest eigenvalue, defined as
η = max{|λ2|, |λn|}.

Ioana Dumitriu (UW) Spectral gap in bipartite graphs February 27, 2018 8 / 22



Intro: expanders and bipartite graphs

Random regular graphs

McKay (’81) calculated asymptotical empirical spectrum
distribution (Kesten-McKay law); yields lower bound on η of
2
√

d− 1− o(1)

Work on lower bounding η also by Alon-Boppana (’86), upper
bounding η by Friedman (’03). Uniformly random regular graphs
are almost Ramanujan, i.e.,

η ∈ [2
√

d− 1− o(1), 2
√

d− 1 + ε] .

a.a.s. as n→∞.
Recently, Bordenave (’15) tightened Friedman’s proof to
η = 2

√
d− 1 + o(1).
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Intro: expanders and bipartite graphs

Work on bipartite biregular graphs

Bipartite biregular graphs not quite expanders; mixing keeps
track of class, but can mix quickly within class

Studied in most contexts where regular graphs appear
Again, uniform distribution important.
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Intro: expanders and bipartite graphs

Work on bipartite biregular graphs

Largest eigenvalue λ1 =
√

d1d2, matched by λn = −
√

d1d2.
Godsil and Mohar (’88) calculated asymptotical empirical
spectrum distribution when m/n = d2/d1 → γ ∈ [0, 1]
(Marčenko-Pastur-like);

Their work shows lower bound on λ2 ≥
√

d1 − 1 +
√

d2 − 1− o(1)

Feng and Li (’96) and Li and Sole (’96) also worked on lower
bound
Matching upper bound: work by Brito, D., Harris (2018).
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Random Bipartite Biregular Graphs are almost Ramanujan

Random bipartite, biregular graphs (RBBG)

Would like to study the uniform distribution on RBBG, but it’s
hard to work with

Instead, use the configuration model (Bender, Canfield ’78,
Bollobas ’80)
− “asymptotically uniform” (contiguous to the uniform one),

anything happening a.a.s. in configuration model happens a.a.s. in
the uniform one
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Random Bipartite Biregular Graphs are almost Ramanujan

Main Result

Let G(d1, d2,m,n) be a random bipartite graph generated with the
configuration model.
Largest modulus eigenvalues are ±λ = ±

√
(d1 − 1)(d2 − 1). What

is the third largest?

Theorem (BDH’18)

λ3 ≤
√

d1 − 1 +
√

d2 − 1 + o(1), with high probability.

Note sum instead of product.
Proof follows in the footsteps of Bordenave (’15)
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Random Bipartite Biregular Graphs are almost Ramanujan

Random bipartite, biregular graphs (RBBG)

Bounding second eigenvalues general idea:
If v is the norm-one eigenvector for λ1, subtract vvT from A to make
λ2 largest eigenvalue; Ã = A− vvT

If A positive definite find upper bound on ||Ã|| by ||Tr(Ãm)1/m|| as m
grows large
If Ã not positive definite, examine Ãl(Ã∗)l instead (in some form)
Applied in many contexts, with success
Not here. Sadly, Ãm is too hard to work with (too much “chaff”)
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Not here. Sadly, Ãm is too hard to work with (too much “chaff”)

Ioana Dumitriu (UW) Spectral gap in bipartite graphs February 27, 2018 14 / 22



Random Bipartite Biregular Graphs are almost Ramanujan

Random bipartite, biregular graphs (RBBG)

Bounding second eigenvalues general idea:
If v is the norm-one eigenvector for λ1, subtract vvT from A to make
λ2 largest eigenvalue; Ã = A− vvT
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grows large
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Random Bipartite Biregular Graphs are almost Ramanujan

Non-backtracking matrix

Idea: Examine instead the “non-backtracking” matrix B, whose
rows/columns indexed by edges, and Bef = 1 iff e = (v1, v2),
f = (v2, v3) with v1 6= v3. Non-symmetric!

Can relate the eigenvalues of B to those of the adjacency matrix A
via the Ihara-Bass formula

det(B− λI) = (λ2 − 1)|E|−n det(D− λA + λ2I) ,

with |E| = number of edges, D the diagonal matrix of degrees.
Spectral gap for B may yield spectral gap for A (works here).
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Random Bipartite Biregular Graphs are almost Ramanujan

RBBG spectral gap proof ideas

Show that B has spectral gap. (Easier to do so than for A; yet very
technical.)

Subtract off a “centering” matrix that has the effect of zeroeing the
two largest eigenvalues to get B̄. Bound highest eigenvalue of B̄ by

E
(
||B̄`||2k

)
≤ E

(
Tr
(

(B̄`)(B̄`)∗
)k
)
.

Linear algebra (Bordenave ’15) yields

λ2 ≤ max
x⊥v1,v2,||x||2=1

(
||Blx||

)1/l
.

Show that Bl = B̃l(1 + o(1))

The rest is (roughly) sophisticated circuit-counting.
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Random Bipartite Biregular Graphs are almost Ramanujan

RBBG spectral gap proof ideas

We call a graph l-tangle-free if all vertex neighborhoods of size up
to l contain at most one cycle.

Roughly speaking, this means that cycles are far from each other.
We can show G(m,n, d1, d2) is c logd n-tangle-free with high
probability (d = max{d1, d2}).
This, together with non-backtracking feature, helps with
circuit-counting.
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Random Bipartite Biregular Graphs are almost Ramanujan

RBBG spectral gap proof ideas

Dominant terms come from circuits that are exactly trees
traversed once forward and once backward.

Like in the moment method proof of the semicircle law.
There, existence of an edge repeated more than once brought one
less choice of vertex and edges appearing once cancelled term
Same here about multiple repetitions, but no exact cancellation for
edges appearing only once; finer estimates needed due to lack of
independence. Still, doable.
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Applications

Applications for RBBG: community detection

− frame graphs: given a small, edge-weighted graph, use it to define
community structure in a larger, random graph. Each graph is
represented by a vertex, the weights in the frame define the
number of edges between classes. Quasi-regular.

A Frame B Random regular frame graph

pA = 1/8

pB = 1/8

pC = 3/4

3

3
6 1

12

2
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Applications

Applications for RBBG: community detection

− Such graphs are known as equitable graphs, as per Mohar ’91,
Newman & Martin ’10, Barucca ’17, Meila & Wan ’15. Objects of
study: community detection (with lots of assumptions).

− Using a very general theorem of Meila ’15 (under certain
conditions, the highest eigenvalues of the random graphs are
those of the frame), we concluded that community detection is
possible in such graphs (removing assumptions).

− Conditions not optimal, but a starting point for further study.
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Applications

Applications for RBBG: expander codes

− Expander codes (Tanner codes) introduced in Tanner, ’62
− Linear error-correcting codes whose parity-check matrix encoded

in an expander graph

− Using Tanner ’81, Janwa and Lal ’03, one may construct codes
with decent relative minimum distance and rate by using bipartite
biregular graphs.
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Applications

Applications for RBBG: matrix completion

− Idea: given Y a large matrix with “low complexity” (e.g. sparse,
low-rank, etc.) observe some of Y’s entries, and based on them
find Y′ such that ||Y− Y′|| is small (or even 0) in some norm || · ||.
(Netflix problem; Amazon, etc.)

− Matrix version of compressed sensing (Candès and Plan ’10,
Candès and Tao, ’10).

− Recent idea: sample entries according to a random regular graph
(Heiman et al ’14, Bhojanapalli and Jain ’14, Gamarnik et al ’17).

− If one uses a RBBG instead (simple-mindedly), improvement in
bounds by a factor of 2 (as compared to Heiman et al. ’14;
studying Gamarnik et al. ’17). Possibly more?...
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